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We investigated the morphology of dendrite tips through the growth and measurement of pure succi-
nonitrile dendrites at a fixed supercooling of 0.46 K. Many current theories of dendritic growth rely on
the assumption that the tip region can be approximated by a paraboloid of revolution. The evidence
presented here suggests that this assumption becomes invalid in regions only slightly removed from the
tip and well before the appearance of side branches. Characterization of dendrites using a fourth-order
polynomial, with fourfold rotational symmetry, provides a useful description of the dendrite extending to
regions up to eight radii from the tip. This has also enabled a more precise determination of the shape
and size of a dendrite tip than was heretofore possible. This includes information about the anisotropy

of the interface morphology.

PACS number(s): 68.70.+w, 68.35.Bs, 81.30.Fb, 61.50.Cj

I. INTRODUCTION AND BACKGROUND

Solidification processes in many common engineering
materials frequently produce morphologically complex
dendritic microstructures. The study of the formation of
dendrites is important because the initial, or “as cast,”
microstructure dictates many of the resulting material
properties. If a better understanding of the physical pro-
cesses by which dendrites form can be achieved, both im-
proved theories and manufacturing processes can subse-
quently be developed.

Dendritic microstructures are commonly observed in
processes where the driving forces (thermal and/or solu-
tal gradients) are relatively small and where the materials
exhibit relatively little crystalline anisotropy. These con-
ditions are common to many solidification processes,
ranging from the casting of metals and alloys to welding.
A review of the salient physics of dendritic growth as
well as a summary of current theories can be found in a
recent review by one of the authors [1].

To date, the principal theoretical developments con-
cerning dendritic growth include the assumptions that a
dendrite tip can, to a good approximation, be represented
by a paraboloidal body of revolution growing at a con-
stant velocity. Given these assumptions, Ivantsov has
shown the solution of the pertinent steady-state heat
transport equations to be [2]
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St=Pe , (1)

where St=AT /(L /C,) defines the Stefan number (the di-
mensionless supercooling), Pe=VR /2a defines the
growth Péclet number, AT is the supercooling, L is the
molar latent heat, and C, is the molar specific heat under
constant pressure. V represents the steady-state
dendrite-tip velocity, a is the thermal diffusivity of the
liquid phase, and R is a length scale, taken here to be the
radius of curvature at the paraboloidal dendrite tip.

If the Ivantsov equation, Eq. (1), is written as
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St=1I,(Pe), where the function, I, (Pe) represents the
right-hand side of Eq. (1), then the product VR can be ob-
tained as a function of the independent variable AT from
the inverse relation Pe=1, !(St). Upon rearranging, and
formally inverting this formulation, we obtain

VR =2al, '(St) . )

Equation (2) does not uniquely specify the operating state
of this system. In order to determine ¥V and R separately
as functions of the supercooling (St, or A7), a second re-
lationship, independent of Ivantsov’s theory, is needed.
This relationship, first suggested from Oldfield’s con-
siderations of the stability of the growth interface [1], is

VR2=const . (3)

Combining Egs. (2) and (3) makes it possible to predict
the dendritic growth rate ¥ as well as a morphological
length scale parameter R as independent functions of the
supercooling. Exploration of the validity of the tip shape
approximation as a paraboloidal body of revolution is the
primary focus of this work.

The results of this study show that the shape of the tip
region of a dendrite cannot be represented accurately by
a paraboloid of revolution. However, when a second pa-
rameter, in addition to R, is included in the characteriza-
tion, the tip region can be represented sufficiently accu-
rately through the use of a fourth-order polynomial with
fourfold rotational symmetry incorporated into the
fourth-order constant.

It has long been recognized that dendrites are not para-
boloids of revolution—particularly if one considers the
regions slightly displaced from the tip. This is illustrated
in Fig. 1 [3] where two succinonitrile dendrite images are
superimposed upon one another. Here, one tip (¢=0°)
viewed along a (100) direction appears wider than a
“best-fit” parabola (dotted line), and a second image
(¢p=45°) obtained from the (110) direction is seen to be
narrower than the “best-fit” parabola. One should note,
however, that close to the tip, the two views do in fact
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FIG. 1. SCN dendrite tip viewed from two orientations. This
illustrates [3] the difference in shape of two superimposed views
of the same dendrite. The view from ¢=0° was made by imag-
ing a dendrite from the direction of the side branches, while
¢=45° represents a view from between the side branches. A
best-fit parabola is indicated by the dotted line between these
two profiles.

start to approximate more closely the “‘best-fit”> parabola.
This observation justifies the basis of why most efforts in
measuring R, to date, have made use of a parabolic
(second-order polynomial) fitting form (see, for example,
Refs. [3-6]).

A fundamental difficulty in quantifying dendritic tip
shapes is that in order to obtain the radius of curvature at
the tip, it is necessary to use information that comes from
regions of the solid-liquid interface away from the tip. It
has been observed by several investigators [4,7] that the
quality of shape information captured in optical images
obtained near the tip is not as high as that taken from re-
gions further away. The tip, in addition to being the re-
gion of the highest geometric curvature, is also the region
of the interface surrounded by the steepest gradients,
where the distortion due to variations in the melt’s re-
fractive index is greatest. A second detrimental effect is
the influence of the “optical point spread function” at the
tip. This effect, resulting from the spreading of a theoret-
ical point source due to aberrations in the optics system
[8] becomes more important at the tip, where these point
spread functions begin to overlap. These issues make it
difficult to locate accurately the crystal/melt interface of
the dendrite near the tip. Furthermore, regression tech-
niques employed for computing the tip curvature typical-
ly rely more on the information taken from the tip of the
dendrite. This last issue can, however, be dealt with
through the use of somewhat more elaborate weighting
schemes in the regression calculations which favor the
data farther from the tip, where the deviations from para-
bolicity become more evident.

A paraboloidal dendrite tip will display a two-
dimensional (2D) projection (or shadow profile) of its
solid-liquid interface that can be represented with a
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second-order polynomial equation in Cartesian coordi-
nates. This shape takes the functional form for a vertical-
ly opening parabola of

1

y=yot oo (x—x0), @
where x and y are the coordinate directions, R is the ra-
dius of curvature at the tip, and the point (x,,yq)
represents the location of the tip. In this form, Eq. (4) is
nonlinear in the fitting parameter x,. If the following
substitutions are made,
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it is then possible to rewrite Eq. (4) as a standard second-
order polynomial,

y=ag+a;x+a,x?. (5)

In this form, profile data from micrographs of growing
dendrites can be fitted using standard linear regression
techniques to produce values for aqy, a;, and a,, from
which x, y¢, and R can be calculated.

The curvature of any 2D, single-valued function
y =f(x) is given by the standard differential expression

Lf"(x)]
= e —— 6
K [1+f;(x)2]3/2 ( )

where f'(x) and f''(x) represent the first and second
derivatives, respectively. When Eq. (6) is applied to the
second-order polynomial, Eq. (5), it yields the radius of
curvature (R) at the tip (x =x) of

1

;2 . (7)

R = —1- =
K
The combination of the second-order polynomial, Eq. (5),
with the tip curvature, Eq. (7), yields the shape relation-
ship for the tip region given initially in Eq. (4).

Several other methods appear in the literature to ex-
tract radii measurements from crystal/melt edge profiles.
For example, if one locates the tip of the parabola at the
origin of the coordinate system, then Eq. (4) reduces to

=1
Y= (8)
This relationship is represented in Fig. 2, where w =2x,
and L=y. Substituting these definitions into Eq. (8)
yields the parabola

w?=R8L . 9)

Equation (9) indicates that if w? is plotted against 8L, the
resulting slope would be the radius of curvature at the tip
of the parabola R. If one uses this approach with an ex-
perimental data set from a dendrite tip profile, the slope
will not remain constant for all L, unless the tip shape is
exactly paraboloidal.

Use of this procedure requires that the dendrite tip be
vertically oriented, and that the tip be located at the ori-
gin. The location of the tip may be identified using
several techniques, including calculation of the average x
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FIG. 2. Parabola with tip located at origin. The radius of
curvature at the tip is identified as well as the width (w) at posi-
tiony =L.

value in the data set, locating the lowest y value in the
data set, or by “eyeball” approximation.

A more robust procedure would allow the tip of the
dendrite to be located at positions other than the origin.
Combining the second-order polynomial, Eq. (5), with a
linear regression technique, x,, yy, and R can all be
determined given a set of x-y coordinates representing the
tip profile. If the tip location is identified via regression,
rather than by less reliable approximations such as those
described above, then the error incurred near the tip re-
gion where the model is particularly sensitive is mini-
mized. All of these radii calculations, however, are limit-
ed by the stringent assumption of a parabolic tip profile.

Several researchers have suggested that a higher-order
polynomial model be used to characterize the shape of
dendrite tips [6,9-12]. The parabolic profiles described
previously quickly become inaccurate away from the tip,
often well before side branching becomes dominant.
Maurer, Perrin, and Tabeling’s suggested improvement
[6] adds a shape modulation based on cos(4¢), reflecting
the fourfold symmetry of many cubic dendritic crystals.
The suggested tip profile may be expressed as

2
Y=XT[1+acos(4¢)]—8X4cos(4¢) : (10)
where Y=y/R, X=x/R, and a and & are fitting
coefficients. Maurer, Perrin, and Tabeling [6] have found
the coefficient a in NH,Br dendrites to be negligible, re-
sulting in the fourfold symmetry being restricted to the
fourth-order term, namely,

X2

Y=T—8X4cos(4¢). (11)
Theoretical models developed by Kessler and Levine,
Ben-Amar and Brener, and Brener [9-12] have recently
been proposed for describing the steady-state three-
dimensional shape of dendrites when anisotropy of the in-
terfacial energy is incorporated [11]. The typical aniso-
tropic shape, one form of which is given by Brener, in-
corporates a term for each of the azimuthal modes [12],

X2
Y=—T+2 A, X" cos(me) . (12)

For a crystal with fourfold cubic symmetry, the first
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non-negligible correction term to the parabola is the
fourth-order harmonic (m =4). If Eq. (12) is limited just
to this m =4 term, it can be reduced to the form of Eq.
(11), excepting the sign convention.

II. EXPERIMENT DESCRIPTION

The experiments conducted in this investigation were
performed using ultrapure succinonitrile [SCN, chemical
formula: CH-(CH,),-CN] in a temperature-controlled en-
vironment with a stability of +1 mK. 32 dendrites were
grown with an average observed supercooling of
AT=0.461%0.002 K. Figure 3 shows a schematic dia-
gram of the experimental setup. In an effort to obtain op-
timum optical quality for the images, the heat transfer
medium used in the thermostated bath surrounding the
growth chamber is a transparent mixture of water and
ethylene glycol of a composition (~87% ethylene glycol)
that matches the index of refraction of the molten SCN.
The growth chamber containing the purified SCN
(99.999% pure) was designed as part of the isothermal
dendritic growth experiment [5] and is constructed solely
of stainless steel and borosilicate glass for ruggedness,
and to minimize the chemical interaction between the
SCN sample material and the container. These materials
were selected following extensive chemical compatibility
studies by Rubenstein, Tirmizi, and Glicksman [13] and
have proved not to degrade the purity of the SCN stored
in such chambers over periods of time exceeding three
years.

The process of growing a dendrite starts by melting the
SCN and then lowering the bath temperature to the
desired supercooling, while maintaining the SCN within
the growth chamber in the liquid state. Once thermistors
located within the chamber (Fig. 4) indicate thermal sta-
bilization at the predetermined supercooling level, a ther-
moelectric cooler is activated to cool the end of a tube
filled with a small amount of SCN (the “stinger” in Fig.
4). The molten SCN within this tube starts to solidify,
and the solidification front propagates along the tube un-
til it emerges into the large volume of liquid SCN in the
main chamber. Once free of the confinement of the
stinger tube, a dendrite proceeds to grow freely into the
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FIG. 3.

Schematic representation of the experiment. A
growth chamber with four perpendicularly oriented windows is
placed in a uniform temperature bath. After nucleation, den-
drites are photographed at regular time intervals along two per-
pendicular directions.
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FIG. 4. Schematic representation of growth chamber. The
thermoelectric cooler induces nucleation that propagates along
the stinger tube and into the chamber interior where a single
crystal dendrite is free to grow.

melt, forming a three-dimensional dendritic equiaxed
crystal. At this point, 35-mm photographs are taken at
regular time intervals along the two perpendicular optical
paths. Typical photographs, as seen in Fig. 5, serve as
the primary source of dendrite tip-shape information
used in these experiments.

The 35-mm negatives are analyzed using a combination
of microscope/vernier measurements and computer-
based image processing. The vernier stage is used with a
microscope to locate the position of the dendrite tip as it
changes over time in each of the orthogonal views. This
yields the tip position as a function of x,y,z and time.
The tip velocity vector is calculated from these data and
provides an indication of steady-state growth as well as
the Eulerian angles of the growth velocity vector with
respect to a coordinate system aligned with the stinger
tube axis. Next, using a PC-based image-capture system,

FIG. 5. 35-mm film image of SCN dendrite growing iso-
thermally at AT=0.46 K. Photos are taken along perpendicu-
lar axes to produce velocity, size, and shape information.
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the dendrite tip images are digitized. The digitized im-
ages are analyzed, producing a set of ordered pairs (x,y)
of the solid-liquid interface positions for each dendrite.
There are several methods available for locating the inter-
face (the optical dendrite edge), and are discussed in more
detail by Dougherty and Gollub in Ref. [4] and by
Glicksman et al. in Ref. [7].

Once the edge has been located and reduced to the
form of a set of x-y coordinate pairs, these data can then
be analyzed using a variety of methods to determine the
length scale of the dendrite tip. The primary focus of this
work is delineating the process of determining the three-
dimensional size and shape of dendrites.

III. FOURTH-ORDER POLYNOMIAL
CHARACTERIZATION METHOD

It is proposed here that a fourth-order polynomial pro-
vides an improved description of the three-dimensional
shape of a dendrite tip in comparison with standard re-
sults obtained using second-order parabolic models. The
equation used in this study is a simple extension of the
second-order polynomial, Eq. (4), namely

y=y0+L(x —x0) 2 +q(x—x4)*, (13)
2R

where g has units of length 3 and represents the ampli-
tude of the quartic deviation from parabolicity. Later,
we will incorporate rotational asymmetry of the shape,
arising from anisotropy effects, through this fourth-order
coefficient. This avoids the need to assume the anisotro-
py function ab initio. Notice that Eq. (13) is again non-
linear in the fitting parameter x, but this time, cannot be
rewritten in a form that can be fitted using a linear re-
gression technique as was done when the second-order
shape described by Eq. (4) was transformed into the stan-
dard polynomial form of Eq. (5). Attempts at transform-
ing the fourth-order shape equation, Eq. (13), into a
simpler form result in an overspecified system. Five
equations result, but they are not linearly independent,
because there are only four independent parameters (x,
Yo, R, and g). In order to fit dendrite edge data to this re-
lationship, standard nonlinear regression techniques may
be applied to the fourth-order shape equation, Eq. (13).
However, a more efficient scheme has been developed as
part of this work.

The relationship in Eq. (13) is fit here by fixing the pa-
rameter x, and performing a standard linear regression
such as a fourth-order polynomial fit with the first- and
third-order coefficients set to zero. If we let x'=x —x,,
then the equation can be written as

y=y0+—21?(x')2+q(x’)4 . (14)

With the resulting fitted coefficients, a value for the
““goodness of fit” is determined using the expression

XZ: E(yexp YVt )2

=, (15)

where y,, and yg represent the experimental and fitted
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data points, respectively, and »n is the number of data
points used in the regression. The fitting process is re-
peated systematically by choosing new values of x;, and
recalculating the other fitting constants and the corre-
sponding 2. The value of x, that produces fitting con-
stants which result in the minimum x? is taken to be the
“best fit.”” When performed iteratively, using a computer,
the selection of x for minimization of y? is done using a
secant method.

Application of the curvature equation, Eq. (6), to the
higher-order tip shape in Eq. (13) indicates that the ra-
dius of curvature at the tip of the dendrite remains a
function of only the second-order term. This allows the
axisymmetric, paraboloidal contribution of the shape to
be exclusively determined by the second-order
coefficients, leaving the higher-order terms to describe
the asymmetric deviations occurring away from the tip.
Thus, adding higher-order terms to the parabolic model
reduces the orientation dependence of the measured ra-
dius.

IV. RESULTS AND DISCUSSION

Several researchers [3,4,6,14] have already shown in
their results that the paraboloidal shape assumption of
the dendrite tip does not hold away from the tip. By
varying the data range (starting from the tip) used in the
regression analysis of the second-order polynomial, Eq.
(5), the measured radius is observed to vary approximate-
ly linearly with the range of data. Results from this type
of analysis are shown in Fig. 6 for dendrites from our ex-
periments viewed from three different directions.

Figure 6 contains several points of interest. If the as-
sumption of a paraboloidal shape is valid, then as shown
by Eq. (7), the fitted radius of curvature should not de-
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FIG. 6. Radius as a function of sampling range for a second-
order polynomial regression model based on Eq. (5). The radius
at the tip can be obtained by extrapolating the plot to y ., =0.
Data are shown for dendrites observed from three different
directions: ¢=41.25° 31.25° and 2.5°.
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pend on the data range used in the regression; i.e., R
should be a constant. Inspection of this figure shows that
as the sampling region is increased, the radius is not gen-
erally constant. Instead, as shown for two of the three
dendrites viewed from different orientations, the observed
radii of curvature deviate steadily from the paraboloidal
radius of curvature. However, when a dendrite is ob-
served from an orientation of approximately ¢ =~30°, the
profile is close to a parabola. Evidence of this is seen in
the third dendrite represented in Fig. 6, where a nearly
constant value of R is observed as the sampling region is
extended away from the tip. A second point of interest in
this figure is noted by extrapolating the data back to the
point where the sample range y, ., =0. Here, a value of
the radius of curvature at the tip may be deduced by ex-
trapolation. This extrapolation is used to represent what
the radius would be, were it possible to measure the cur-
vature directly (and reliably) at the tip. Inspecting the
data from each of the different view directions shows that
this extrapolated tip radius varies less with the view
direction than do radii measurements taken at any other
value of the ordinate. Using this technique, any of the
three data sets in this figure can be extrapolated back to
the tip where the individual tip radii approach a common
value.

These results clearly illustrate that dendrites are not
bodies of revolution. In addition, commonly observed
fourfold rotational symmetry that is associated with the
side branch planes in cubic materials cannot be charac-
terized using a second-order polynomial model. The ex-
trapolation methods, however, described above (and in
Fig. 6), can improve the results. It now becomes clear
that the paraboloidal model should be modified to permit
more precise description of a dendrite tip.

As discussed earlier, the experimental data that were
obtained in this study consist primarily of x-y coordinates
of dendrite-tip profiles observed from varying projection
orientations ¢. By fitting these data to the fourth-order
shape of Eq. (13), relationships between R and g and the
view direction ¢ can be obtained. The fourth-order
coefficient can be scaled conveniently as Q=¢R? to ac-
count for minor fluctuations in the supercooling and any
convective influences reflected in R. Since the parame-
ters xy and y, in Eq. (13) do not describe the tip shape,
the basis shape can also be scaled by the tip radius to pro-
duce a nondimensional form similar to Eq. (11), namely,

2
Y=3(2—+Q(¢)X4 , (16)

where Q(4) is free to vary as a function of the projection
direction ¢.

Figure 7 shows that the application of a fourth-order
polynomial to the regression of the tip profile data pro-
vides better qualitative and quantitative agreement than
does the second-order polynomial to a region extending
much further from the tip. We note that the two models
agree well near the tip. The second-order fit, however (no
matter how R is extracted from the tip profile data),
starts to deviate noticeably from the profile at approxi-
mately three to four radii from the tip. The fourth-order
fit, by contrast, continues to agree well with the tip
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FIG. 7. Second- and fourth-order polynomial fits superim-
posed upon the edge data. The fourth order fit is seen to be
qualitatively better away from the tip region. Near the tip re-
gion, however, the two models agree well.

profile to beyond eight radii, which is a region sufficiently
remote from the tip where side branches become visible.
Improvement in the radii data is also evident in Fig. 8,
which shows that when using a fourth-order fit, the direc-
tion from which the measurement is made is much less
influential than for the case of the second-order fit (com-
pare with Fig. 6). Since regions of the interface displaced
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FIG. 8. Radius as a function of sampling range for a fourth-
order polynomial regression model based on Eq. (13). Less sen-
sitivity is seen over the sampling range, particularly in the re-
gion closer to the tip where side branches are not prevalent (for
example, side arms appeared at about 175 um for the case of
$=31.25°).

2783

further from the tip have an increasing presence of side
branches, the tip radius should be obtained by taking an
average over the sample ranges of the tip exhibiting rela-
tively constant value, where the influence of side
branches is not significant. Figures 7 and 8 illustrate that
this plateau is typically beyond the region proximate to
the tip (where scatter in the data is more influential), but
not so far from the tip that side branches are present.
This process of selecting the region over which to take
the average is consistent with numerical calculations we
performed using an exact fourth-order function with 1-
pm Gaussian scatter added to the profile data. The selec-
tion of the region over which to calculate the average
does involve judgment, but in comparison to making
similar measurements using the second-order methods
discussed previously, this technique is less subjective and
appears to produce more reliable tip radii data with less
scatter.

If the tip region of a dendrite can be characterized
quantitatively in the mathematical form of Eq. (13), then
a dendrite observed from any direction should produce
the same fitted value for the radius. Potentially, such a
procedure would be useful for making experimental mea-
surements of tip radii, as it would no longer be necessary
to make measurements from a particular direction.

Figure 9 shows the measured tip radii as a function of
the projection orientation from which the dendrite profile
was observed. Of the 32 dendrites grown, 22 images were
usable for shape measurements, due primarily to restric-
tions on image quality. Inspection of these data shows
that the spread in the radii is +1.5 um over most of the
range of ¢. This is approximately a 50% reduction in
spread compared with tip radii data obtained using para-
bolic regression techniques. It is not clear whether the
slight downward trend in radii (as ¢ is increased) is real,
because this variation in R is comparable to the size of
the uncertainty in the radii data. Furthermore, the data
becomes somewhat sparse as ¢ exceeds about 25°.

The dimensionless form of the fourth-order constant
(Q) is plotted as a function of observation angle ¢ in
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FIG. 9. Dendrite-tip radius as a function of orientation cal-
culated using fourth-order polynomial regression. 22 of the 32
dendrites grown at 0.46 K produced usable tip shape data.
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Fig. 10. A pronounced variation in Q is noted as the den-
drite is viewed from different azimuthal directions. The
profile of a dendrite will become a parabola when ob-
served from the orientation ¢, for which Q is zero. The
figure indicates that this occurs when ¢~30° rather than
¢=0" (note, $=~0° is the [100] direction), which was as-
sumed to be the principal projection direction closest to a
parabolic profile [3]. The projection angle, $=~30°, also
differs from the value of ¢ = 22.5° that is consistent with
the cos(4¢) anisotropy terms in Egs. (11) and (12). The
amplitude of the variation in Q is approximately
A ~0.008 over the azimuthal angle range of 0°-45°.
Closer inspection of the figure also reveals that the mid-
point of this variation does not occur at $=22.5°, which
would be expected if Q were of the form Q = f(cos(4¢)).
Instead, it occurs at ¢=~30°, somewhat shifted to the
right. If we examine only the amplitude of Q, the experi-
mentally observed value of the ratio 4 /2~0.004 can be
compared to Brener’s theoretically predicted value for
SCN [12] of 4,=1/88=0.011 resulting from Eq. (12).
Note that in order to determine the variations of Q and R
with ¢, it is required that ¢ be determined. The pro-
cedure for making this measurement when using fixed
camera positions (as described earlier) is discussed in the
Appendix.

These observations imply that the use of Eq. (11) may
not characterize the tip region accurately. Equation (12),
with terms for m =4,8,... may be required. However,
even without this analysis, we can draw a smoothed curve
to describe the measured variation of Q with ¢ shown in
Fig. 10. Combining this representation of Q, with an
average value of R from Fig. 9, we have fully
parametrized the dendrite in accordance with the
fourth-order equation as described in Eq. (14). We then
used this equation to form a contoured plot of an average
three-dimensional dendrite tip, projected along the {( 100)
growth direction, at a supercooling of 0.461 K (Fig. 11).
This contour mapping, with contours at 1R increments of
the y coordinate, fits the R and Q data from the experi-
ments described herein. It exhibits in a compact graphi-

FIG. 11. Contour plot of an “average” dendrite resulting
from experimental measurements of the tip region, before the
appearance of side branches. Contours are drawn at intervals of
1R along the dendrite axis, starting from the tip.

cal form many of the key features of a true three-
dimensional dendrite tip, in the region close to the tip,
before the appearance of side branching. This plot
should not be confused with similar contour plots, based
on qualitative analysis, that are used for illustrative pur-
poses only.

V. CONCLUSIONS

The method for characterizing dendrite-tip shapes
presented herein demonstrates that a paraboloid of revo-
lution does not accurately describe the shape of a den-
drite tip.

These data provide an experimental description of the
three-dimensional shape of dendrite tips that can be em-
ployed as a test for theory. These data can also be used
for comparisons with dendrite-tip shapes resulting from
three-dimensional phase field models such as those per-
formed by Kobayashi in Ref. [15].

The use of a fourth-order polynomial provides, in addi-
tion, a 50% reduction in the uncertainty levels of mea-
sured tip radii data. It is not conclusive, however, wheth-
er or not this process entirely removes the orientation
dependence of the tip radii values.

It has been shown that dendrite tip shapes differ some-
what from previous assumptions. Tips viewed from the
[100] direction are not parabolic in profile, and a cos(4¢)
shape modulation does not seem to describe the observed
azimuthal form of the nonaxisymmetric variation in cross
section caused by crystalline anisotropy.

VI. SUMMARY AND ONGOING ACTIVITIES

By using a fourth-order polynomial to describe the
three-dimensional shape of a dendrite tip, the dendrite
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morphology can be characterized accurately up to the re-
gion where side branches are present.

The azimuthal variation of the asymptotic portion of
the tip shape does not follow the cos(4¢) form suggested
for cubic crystals. It may be necessary to include higher
mode terms (m =8, etc.) in the regression analysis using a
relationship such as Brener’s Eq. (12) [12].

The work presented here has introduced several issues
that could be explored further from both experimental
and theoretical perspectives. Current efforts involve im-
proving experimental and data processing procedures.
Experiments similar to those described here are under-
way, investigating the dendritic tip shape at various su-
percoolings. In addition to this, experiments are being
considered that will permit three-dimensional morpholo-
gy measurements on a single dendrite, rather than a large
set of dendrites. This will dramatically speed up the ex-
perimental process and minimize the effects due to natu-
ral variation among dendrites.

A set of experiments are currently scheduled to be con-
ducted by NASA in low Earth-orbit microgravity condi-
tions aboard the USMP-3 space shuttle platform in early
1996. These experiments are specifically aimed at deter-
mining the effect that buoyancy convection has on the
three-dimensional shape of SCN dendrites.
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APPENDIX

Given a pair of images of a dendrite, obtained from
two perpendicular directions, it is possible to discern the
orientation of the dendrite from which the images were
obtained. The angle of this direction (depicted in Fig. 12)
is referred to here as the projection orientation ($). This
figure shows a schematic diagram of the dendrite cruci-
form with some of the key features identified. The pro-
jections (indicated in figure) represent the view seen in the
pair of orthogonal images

The orientation ¢ is identified as being the angle be-
tween the view plane and any side branch plane. Due to
the fourfold rotational symmetry, it does not matter
which of the 4 side branch planes is used. We denote the
following vectors as indicated in Fig. 12: P denotes pri-
mary arm vector _(unit vector in the direction of the pri-
mary dendrite). S denotes side arm vector (unit vector in
the direction of side branch or alternate primary den-
drite). V denotes view vector (unit vector in the view
direction: can be taken along the coordinate axis such as
VAR
These three vectors can be combined to define two
planes: Side branch plane: vectors S and P; view plane:
vectors ¥V and P. These two planes intersect along the
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FIG. 12. Schematic representation of dendrite with the pro-
jections that would be seen when viewed from two orthogonal
directions.

primary dendrite arm (vector P). The angle between
these two planes is determined from the angle between
their normals, determined using the cross product of any
two vectors in each respective plane:

Side branch plane normal: ﬁSZﬁ xS , (Ala)
View plane normal: N, =PXV . (A1b)

The orientation (the angle between these two planes) is
thus determined using the vector dot product:

* View A

L 1w
llA u’B
y y y 1 2| L
X z T X
View A View B Vector-Y Axis View Base View

FIG. 13. Identification of vectors representing an arbitrary
dendrite arm (primary or secondary).
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(f N s and N, are unit vectors) . (A2)

This can be further reduced to a value between 0° and
45°. Doing so will produce a ¢ value that will represent
the angle between the view direction and the nearest side
arm plane. This is done using

$=45°—|(¢mod90°)—45°| . (A3)

If the dendrite is a cubic crystal structure with side arms
growing in the (100) directions, ¢ will range from 0°
along (100) directions to 45° in the {(110) directions.
This choice is arbitrary and made only for convenience.

In order to make use of this technique, it is necessary
to have vector information of the primary dendrite arm
and a secondary arm (both assumed to grow along { 100)
directions). Such information can be derived by measur-
ing the projected angle of these arms as seen in each of
the two orthogonal images. Note that it is important
that the same arm is measured in each of the two perpen-
dicular views. Figure 5 shows a typical image from
which the measurements are made.
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Figure 13 depicts a unit vector representing the den-
drite arm being considered (either the primary or a secon-
dary arm). The only measured parameters needed are the
projected angles from each view: a4 and ap. After per-
forming some trigonometry, the following components of
the unit vector are found:

12
x=+ 1 [tan(a,)], (Ada)
1+tan“(a )+tan“(ag)
1 172
y=— ) (A4b)
1+tan%(a 4 )+tan*(ap)
) 172
= t ), A4
z [1+tan2(a,,)+tan2(a3) [tana; )] (Ado)

Note that the signs of the radical terms are a matter of
convention. Once this is done for each of the side arms,
P and S will be of the form

~

P,S=xi+yj+zk . (A5)

These vectors are then used in Eq. (A1) to determine the
orientation angle of the dendrite.
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FIG. 1. SCN dendrite tip viewed from two orientations. This
illustrates [3] the difference in shape of two superimposed views
of the same dendrite. The view from ¢=0° was made by imag-
ing a dendrite from the direction of the side branches, while
&=45° represents a view from between the side branches. A
best-fit parabola is indicated by the dotted line between these
two profiles.
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FIG. 12. Schematic representation of dendrite with the pro-
jections that would be seen when viewed from two orthogonal
directions.
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FIG. 5. 35-mm film image of SCN dendrite growing iso-
thermally at AT=0.46 K. Photos are taken along perpendicu-
lar axes to produce velocity, size, and shape information.



